
1

IBM Systems Lab Services and Training

© 2009 IBM Corporationwww.ibm.com/systems/services/labservices

The Unconstrained Primary Key

Dan Cruikshank

In this presentation I build upon the concepts that were presented in my article
“The Keys to the Kingdom”. I will discuss how primary and unique keys can be
utilized for something other than just RI. In essence, it is about laying the
foundation for data centric programming. I hope to convey that by establishing
some basic rules the database developer can obtain reasonable performance.
The title is an oxymoron, in essence a Primary Key is a constraint, but it is a
constraint that gives the database developer more freedom to utilize an
extremely powerful relational database management system, what we call
DB2 for i.

2

IBM Systems Lab Services and Training

© 2009 IBM Corporation2 www.ibm.com/systems/services/labservices

Agenda

Keys to the Kingdom

Exploiting the Primary Key

Pagination with ROW_NUMBER

Column Ordering

Summary

I will review the concepts I introduced in the article “The Keys to the Kingdom”
published in the Centerfield. I think this was the inspiration for the picture. I
offered a picture of me sitting on the throne, but that was rejected.
I will follow this with a discussion on using the primary key as a means for
creating peer or subset tables for the purpose of including or excluding rows in
a result set.
The ROW_NUMBER function is part of the OLAP support functions introduced
in 5.4. Here I provide some examples of using ROW_NUMBER with the
BETWEEN predicate in order paginate a result set.
Finally, I will wrap up with some column ordering techniques. I provide
examples of using DYNAMIC SQL to provide the ORDER BY string for the
ROW_NUMBER function.
There is a method to this madness as ordering is the last thing the DB2 for i
optimizer addresses.
We will then summarize and answer any questions, time permitting.

3

IBM Systems Lab Services and Training

© 2009 IBM Corporation3 www.ibm.com/systems/services/labservices

Keys to the Kingdom

Constraints

Types of Constraints

Where constraints are used

Lets talk about constraints or what I consider are the true keys to the database
kingdom.

4

IBM Systems Lab Services and Training

© 2009 IBM Corporation4 www.ibm.com/systems/services/labservices

Constraints
Define unconstrained
– Adjective

–Meaning
• free from constraint
•Usage example

–“they were unconstrained by
the boundaries associated with
standards or best practices,
thus they coded with complete
abandon"

Are they
using
RI?

System i Database Navigator

Implied
Relationships

Lets look up unconstrained on the internet and find out what it means, simply
without constraint. Well, that says it all. Nothing like a usage example to
provide more understanding. Some of you may recognize the usage example
from an Application Performance Review I may have recently performed at
your location.
One thing I love to do is use System i Database Navigator to map your
database. Mapping a single database file can produce a display that is like
Google Earth, <click> as we zoom in on the ink blots they begin to take shape
and form relationships.
<click> This brings up one of my favorite questions “ I wonder if they are using
Referential Integrity”. And then my next favorite question “What would happen
if I deleted this row here, or that row there?” This usually grabs the attention of
the CIO.

5

IBM Systems Lab Services and Training

© 2009 IBM Corporation5 www.ibm.com/systems/services/labservices

Types of Constraints

Unique Key
–One or more columns, more than 1 per table

Primary Key
–Only 1 per table, BIGINT AS IDENTITY

Referential (Foreign Key)
–Ensures integrity of relationships

Check
–Ensures integrity of the data

Note: Primary, Unique and Referential constraints are radix
indexes under the covers

These are the constraints that you can define on DB2 for i. Using my
housing database example from the keys to the kingdom, I like to
think of these as the plumbing and wiring of a house. Get this wrong
and you can end up paying through the nose for a long time to come.
A good database design practice is to define a unique key for each an
every database table. A unique key allows you to retrieve a single
row. It also informs DB2 that the value contained in the unique
column will never appear in more than 1 row. Can make a difference
when DB2 is producing a plan for a query that has the unique key
column on a WHERE clause.
DB2 for i supports both a Primary and Unique Key constraint. Why
have 2, you ask. Well, as I pointed out in the keys to kingdom, a
unique key is the application key. The primary key is used to establish
relationships between tables. We see an example of this in upcoming
slides.
The referential or foreign key constraint ensures the integrity of the
relationship by protecting the database from inadvertent deletes or
inserts. More on this later.
A check constraint validates the column data within a row.
The key constraints create binary radix indexes which can be used for
both optimization and implementation.

6

IBM Systems Lab Services and Training

© 2009 IBM Corporation6 www.ibm.com/systems/services/labservices

Where constraints are used?

Data Model of the Employee Master and Department tables

Unique Keys

Provide Single
Row Retrieval

Primary Keys

Used to
Establish

Relationships

Foreign Keys

Connect the
Dots

Check

Must be
‘M’ or ‘F’

Let’s use a logical data model (LDM) of the Employee and Department tables
to demonstrate where constraints are used.

<click>
1. These are the unique keys for the database. The main purpose of the

unique key is to retrieve a single row. This may also be referred to as a
natural key. I call it the application key.

<click>
2. These are the primary keys. The primary key is used to establish referential

integrity between related tables. It is hidden from the applications. Note that
the DEPTNO unique key for the department table also serves as a primary
key..

<click>
3. This is the RI foreign key constraint between the two tables. This constraint

ensures the integrity between dependent relations. In the case of a
validation or lookup relationship, we would probably restrict the department
table row from being deleted if it is referenced by and employee row. We
would also restrict an employee row from being added,

<click>
4. This is the check constraint used for the column SEX. This ensures that the

data entered into this column is valid. I assume that this means gender. It is
amazing what these fields contain when they are unconstrained.

This is the foundation for data centric programming. Not one line of application
code needs to be written to ensure the integrity of the data.

7

IBM Systems Lab Services and Training

© 2009 IBM Corporation7 www.ibm.com/systems/services/labservices

Agenda

Keys to the Kingdom

Exploiting the Primary Key

Pagination with ROW_NUMBER

Column Ordering

Summary

I will now discuss how we utilize the primary key in data centric or database
programming.

8

IBM Systems Lab Services and Training

© 2009 IBM Corporation8 www.ibm.com/systems/services/labservices

Exploiting the Primary Key

Inclusion and Exclusion Tables
–New Column or New Table?

•Unconstrained or Constrained?

Data Centric
–Using database features, functions and programming
techniques to solve business problems.
•Auto-Generated Fields

–Identity column, row change timestamp, etc.
•Referential Integrity
•SQL Joins and Views
•Instead of Triggers

We will begin to look at ways that we can exploit this concept of a primary key.
Here I introduce the concept of inclusion and exclusion, aka peer or subset
tables. This table is characterized by a one to maybe one relationship with the
parent table.
I also introduce the concepts of application versus data centric development.
In essence, by data centric I mean utilizing the capabilities of the database to
solve business problems. This includes the use of identity columns and other
types of auto-generated values. Utilizing join technology, views and instead of
triggers are other forms of data centric development.

9

IBM Systems Lab Services and Training

© 2009 IBM Corporation9 www.ibm.com/systems/services/labservices

A Simple Request

Employee Listing within Department
Request
Need to view by:
–Active only
–Inactive Only
–All
–Ability to order on any column

Issues
–EMP_MAST does not contain a status
column

–Sensitive data
–Ordering on multiple columns

So you just received a request for a new HR application. HR needs to see a
list of all active or inactive employees. A department may have dozens of
employees so they would like to be able to order the list by any column.
Seems like a reasonable request until you review the employee master table.
<click>
There is no column to designate whether an employee is active or inactive. In
addition, the employee master contains sensitive data. And you know they will
want to order on multiple columns (e.g. lastname, firstnme, etc). What
approach do you use to solve this business problem.

10

IBM Systems Lab Services and Training

© 2009 IBM Corporation10 www.ibm.com/systems/services/labservices

Inclusion and Exclusion Tables
Unconstrained

–Requires modification to EMP_MAST
• Impact on existing apps

–Status changes are made via updates
• Journal (logging) issues

–Potential for many new EMP_MAST
indexes

• Adversely effects scalability

Constrained
–No modification to existing table

–Status changes occur to separate table
• Minimizes journal impact

–No new indexing requirement for
EMP_MAST

• Highly scalable

Rational Data Architect

Rational Data Architect

How do you address the problem?
<click>
The unconstrained approach is to add the necessary columns to the employee
master table. This may seem like a simple solution, until you consider the
impact on the rest of the system.
What about all the journal logs that may contain the entire record image
including sensitive data? And don’t forget the impact of additional index
requirements for performance. Every column is a potential index. Two new
columns, two new indexes (A+B, B+A). Wheel in 2 existing columns,
WORKDEPT and LASTNAME and you now have 24 potential indexes
(4*3*2*1). Maybe it’s time to consider an alternative approach.
<click>
Now is the time to take advantage of DB2 for i and exploit it’s capabilities.
Here I create an inclusion/exclusion table which contains the primary key
<click> from the employee master, along with the new status code field and
row change timestamp column which contains the date the row is created. All
update activity occurs against this table, reducing the overhead of journal and
index maintenance and increasing the overall scalability of the employee
database.
So how do you keep it all together?

11

IBM Systems Lab Services and Training

© 2009 IBM Corporation11 www.ibm.com/systems/services/labservices

Data Centric Programming Tip #1
Use Referential Integrity

ALTER TABLE ES ADD CONSTRAINT
EM_ES_FK FOREIGN KEY
(EMP_MAST_PK) REFERENCES EM
(EMP_MAST_PK) ON DELETE
CASCADE;

EM must exist before adding ES

Deleting EM deletes ES

ES can be deleted
EM = Emp_MAST, ES = Employee_Status

Constraint
created here

Participation

One to Maybe One
Mandatory

Optional

Check for existence (SETLL, CHAIN)

If found then Add

This brings us to data centric programming tip # 1 – Use Referential Integrity.
Lets see an example.
This is a data model of the Employee Master (EM) table and the Employee
Status (ES) table showing the relationship between the two tables.
<Click>
The FK designation indicates EM_PK is a foreign key of EM implying EM is the
parent table. As the parent, the participation of the EM table is mandatory. The
circle followed by a single bar indicates that the participation of the ES table is
optional. The degree of participation (aka cardinality) for EM and ES is 1, but
no more than 1. This is referred to as a one-to-maybe one relationship. A
unique key constraint on EM_PK in ES prevents more than 1 row per EM_PK.
In the application centric world I would need to perform an existence check
using a random IO against either table before deleting or inserting a new row.
Not necessary with data centric programming.
<click>
Adding the referential constraint pushes the existence checking down to the
database layer. DB2 for i ensures that the EM row exists before creating an
ES row. The CASCADE rule ensures the ES row is deleted when the EM row
is deleted. In addition an EM row can be created without an EA row. An EA
row can be deleted at any time.

12

IBM Systems Lab Services and Training

© 2009 IBM Corporation12 www.ibm.com/systems/services/labservices

Data Centric Programming Tips 2 & 3
Use SQL Joins and Views

Active only view
CREATE VIEW ACTIVE_EMPLOYEES AS

SELECT em.empno, em.workdept deptno, d.deptname, em.lastname,
em.firstnme, em.midinit, CHAR('Activ',5)

status_code,em.hiredate active_since
FROM emp_mast EM EXCEPTION JOIN

Employee_Status EX USING(emp_mast_PK)
JOIN dept_mast D ON em.workdept = d.deptno;

Inactive Only view
CREATE VIEW INACTIVE_EMPLOYEE_LIST AS

SELECT em.empno, em.workdept deptno, d.deptname, em.lastname,
em.firstnme, em.midinit, es.status_code_description,
DATE(ex.em_status_ts) as inactive_date

FROM emp_mast EM
JOIN Employee_Status EX USING(emp_mast_PK)
JOIN Employee_Status_Codes ES USING(status_code)
JOIN dept_mast d ON em.workdept = d.deptno;

Notes
– EXCEPTION JOIN same as NOT IN or NOT EXISTS subquery
– JOIN same as IN or EXISTS subquery
– Other join types: RIGHT EXCEPTION, LEFT or RIGHT OUTER and CROSS

Rational Data Architect

It’s a Wrap

This brings us to data centric programming tips 2 and 3-Use SQL joins and
views. An SQL statement is like a program. A common mistake made by new
SQL programmers is to treat SQL like an IO operation, Fetch a row then
Select from this and Select from that. Put as much as you can into a single
statement. Let DB2 for i do the heavy lifting.
My data model contains 4 tables. In order to produce an active employee list I
must check for existence in the i/x table. If a matching row is not present then
the EM row is selected. I accomplish using an EXCEPTION JOIN followed by
an inner join to the department table. Note that the active list uses a derived
field for the status.
The LEFT OUTER JOIN can be used to produce a list of all employees with
the inactive status description.
The inactive employee list is a 4 table join. In this case an INNER JOIN is used
and if the i/x row is present then the EM row is selected. The status code from
the ES table is used to join to the code lookup table to return a description.
This is not a derived column.
The SQL view serves two purposes; first it hides the plumbing and second it
makes the complex SQL statement reusable. Any application program can use
the view.
How do you activate or inactivate an Employee?

13

IBM Systems Lab Services and Training

© 2009 IBM Corporation13 www.ibm.com/systems/services/labservices

Data Centric Programming Tip # 4
Use Instead Of Triggers

INSTEAD OF Trigger (IOT)
–Enables updates/deletes or inserts against an SQL view which is considered

Read-Only
• A join would be one such view

In the diagram, the view Active_Employees is a join of three tables
–An UPDATE, DELETE or INSERT to the Active_Employees view will fail

without an INSTEAD OF Trigger

Application
issues U/D/I

IOT
DETOUR

Rational Data Architect

INSTEAD OF
trigger
performs work

Brings us to tip number 4-Instead of Triggers.
An INSTEAD OF trigger enables the use of update, delete and/or insert
operations to be performed against an SQL view which is considered to be
non-updateable, non-deleteable and/or non-insertable. The new
ACTIVE_EMPLOYEES view contains a join making it READ ONLY.
<click> An UPDATE, DELETE or INSERT performed against a READ ONLY
view will fail unless <click> an INSTEAD OF trigger is attached to the view.
The original statement is detoured and <click> the heavy lifting is performed by
the IOT.

14

IBM Systems Lab Services and Training

© 2009 IBM Corporation14 www.ibm.com/systems/services/labservices

Inactivate Employee using INSTEAD OF Triggers

CREATE TRIGGER INACTIVATE_EMPLOYEE

INSTEAD OF UPDATE ON ACTIVE_EMPLOYEES
REFERENCING OLD Old_row NEW New_row

FOR EACH ROW

BEGIN ATOMIC
INSERT INTO emp_status (emp_mast_pk) select emp_mast_pk from emp_mast e

where old_row.empno = e.empno;

END ;

Active_

Employees
UPDATE

VIEW

INSERT INTO
EMP_STATUS

Data CentricApp Centric

Rational Data Architect

The application issued an UPDATE against the view which is transformed into
an INSERT against the ES table.

15

IBM Systems Lab Services and Training

© 2009 IBM Corporation15 www.ibm.com/systems/services/labservices

Re-Activate Employee Using INSTEAD OF Triggers
CREATE TRIGGER REINSTATE_EMPLOYEE
INSTEAD OF DELETE ON INACTIVE_EMPLOYEE_LIST
REFERENCING OLD Old_row
FOR EACH ROW BEGIN ATOMIC

DELETE FROM emp_status e
WHERE emp_mast_pk = (select emp_mast_pk from emp_mast e

where old_row.empno = e.empno);
END ;

INACTIVE_
EMPLOYEE

_LIST

DELETE
FROM
VIEW

DELETE
EMP_STATUS

Data CentricApp Centric

Rational Data Architect

In this example the application issued a DELETE against the view which is
transformed to a DELETE against the ES table.

16

IBM Systems Lab Services and Training

© 2009 IBM Corporation16 www.ibm.com/systems/services/labservices

Example of IOT In Action
CALL DB2SANDBOX/LIST_ACTIVE_EMPLOYEES

('D11', 30,1, '3',0,0);

UPDATE ACTIVE_EMPLOYEES SET
STATUS_CODE = 'I' WHERE EMPNO = '587268';

UPDATE ACTIVE_EMPLOYEES SET
STATUS_CODE = 'MLOA' WHERE EMPNO =
'587268';

COMMIT;

CALL
DB2SANDBOX/LIST_ACTIVE_EMPLOYEES
('D11', 30,1, '3',0,0);

SELECT * FROM INACTIVE_EMPLOYEE_LIST;

DELETE FROM INACTIVE_EMPLOYEE_LIST
WHERE EMPNO = '587268';

COMMIT;
CALL

DB2SANDBOX/LIST_ACTIVE_EMPLOYEES
('D11', 30,1, '3',0,0);

In this example, the end user executes the LIST_ACTIVE_EMPLOYEES
program to display the list of employees. We will examine this procedure in a
few moments. The user needs to make Ruben Borrell inactive. <click>
The user enters an I in the status code field and the program fails.
Examination of the joblog reveals that a referential constraint violation has
occurred. <click>
The user enters a valid code and a refresh of the active list verifies Ruben is
gone. <click>
A sanity check reveals that Ruben is not in the inactive employee listing,
however the Status code used was not appropriate. <click>
Oh no, call for backup.

17

IBM Systems Lab Services and Training

© 2009 IBM Corporation17 www.ibm.com/systems/services/labservices

Agenda

Keys to the Kingdom

Exploiting the Primary Key

Pagination with ROW_NUMBER

Column Ordering

Summary

18

IBM Systems Lab Services and Training

© 2009 IBM Corporation18 www.ibm.com/systems/services/labservices

Pagination

a.k.a. Page at a time
Stateful
–Persistent

•5250 Subfile application

Stateless
–Connectionless

•Client based or
•Web Browser
application

RDA – Data Source Explorer

Stateful means the computer or program keeps track of the state of
interaction, usually by setting values in a storage field designated for that
purpose.
Stateless means there is no record of previous interactions and each
interaction request has to be handled based entirely on information that comes
with it.
The term connectionless is also used to describe communication in which a
connection is made and terminated for each message that is sent. IP is
connectionless as well as stateless. Each communication is discrete and
unrelated to those that precede or follow. In order to have stateful
communication, a site developer must furnish a special program that the
server can call that can record and retrieve state information. Some Web
browsers provide an area in their subdirectories where state information can
be stored and accessed. The area and the information that Web browsers and
server applications put in this area is called a cookie .
Those of us that have written subfile programs understand pagination. As the
subfile was paged forward the program kept the next file position. As long as
the program remained active the cursor position would point to the next record.
A page down request simply allowed the program to read the next n rows to fill
the page. When the job or program ended the cursor positions and subfile data
were flushed.

With client or web based applications the list application is always
disconnected after retrieving a set of rows. When the end of a set is reached a
new connection is made to the server Somehow the application has to begin

19

IBM Systems Lab Services and Training

© 2009 IBM Corporation19 www.ibm.com/systems/services/labservices

Data Centric Programming Tip # 5
Pagination Using ROW_NUMBER

CREATE PROCEDURE LIST_ACTIVE_EMPLOYEES (
IN p_WORKDEPT CHAR(3) ,IN p_rows_to_return INTEGER ,
IN p_Starting_Row INTEGER ,OUT p_ROW_COUNT INTEGER)
RESULT SETS 1 LANGUAGE SQL SPECIFIC SPACTEMP
P1: BEGIN

DECLARE v_dynSQL VARCHAR(1000);
DECLARE v_Ending_Row INTEGER;
DECLARE SP_C1 CURSOR WITH RETURN TO CLIENT FOR SP_s1;
SET v_dynSQL =

'WITH cte_row_number as (' ||
'SELECT EMPNO, ‘ ||

‘ ROW_NUMBER () ‘OVER (ORDER BY lastname, firstnme, midinit) AS CTE_RRN ' ||
'FROM ACTIVE_EMPLOYEES 'WHERE DEPTNO = ?) ' ||

'SELECT AE.* FROM ACTIVE_EMPLOYEES AE ‘ ||
‘JOIN cte_row_number using (EMPNO) ' ||

'WHERE CTE_RRN BETWEEN ? AND ?
ORDER BY lastname, firstnme, midinit';

PREPARE SP_s1 FROM v_dynSQL;

SET v_Ending_Row = p_Starting_Row + (p_rows_to_return - 1);
OPEN SP_C1 USING p_WORKDEPT, p_Starting_Row, v_Ending_Row;

END P1

Variables used to
control pagination

Common Table Expression
used to gen result set RRN

EMPNO used
to join CTE to

View

The ROW_NUMBER function was introduced in 5.4. Basically the function
generates an RRN for each row in the result set.
<click> In this example, the stored procedure receives the page positioning
varialbes (rows to return and starting row) and uses these to determine the
start and end rows of a page.
<click> A CTE is used to generate the row number based on the ordering
criteria. The CTE also contains the unique key as this is known to the
application, the PK is not a part of the view. The row number column is used
on the WHERE clause to select only the rows that are required for the page.
<click> The CTE is then joined back to the active employee view using the
unique key contained in the view and CTE.

20

IBM Systems Lab Services and Training

© 2009 IBM Corporation20 www.ibm.com/systems/services/labservices

Example of Pagination Using ROW_NUMBER

CALL LIST_ACTIVE_EMPLOYEES
(‘D11’,10, 1,0);
Beginning row is 1

CTE_RRN BETWEEN 21 and 30

CTE_RRN BETWEEN 1 and 10

CTE_RRN BETWEEN 11 and 20

CALL LIST_ACTIVE_EMPLOYEES
(‘D11’,10, 11,0);
Beginning row is 11

CALL LIST_ACTIVE_EMPLOYEES
(‘D11’,10, 21,0);
Beginning row is 21

RDA – Data Source Explorer

The stored procedure is called from a client. Each request could be serviced
by different server jobs.

21

IBM Systems Lab Services and Training

© 2009 IBM Corporation21 www.ibm.com/systems/services/labservices

ROW_NUMBER Benefits

Server job handles multiple
requests
–Connection pooling

First request builds Open Data
Path (a.k.a Full Open)
–ODP not deleted after second
request

–Subsequent requests reuse
ODP

Minimizing Full Opens
reduces system resource
usage
–Increases throughput

System i Navigator-Run SQL Scripts

Run SQL Scripts-View Joblog

For best performance use connection pooling. This way the cursor (or ODP)
can be reused by many different requests.
The System i Navigator figure in the upper right hand corner simulates multiple
requests being serviced by different jobs. Each request may be processing
different departments and page ranges, however they can reuse the same
cursor created for the job.
This is shown in the joblog for one of the server jobs. Note the messages
verifying the ODP is not deleted and reused.

22

IBM Systems Lab Services and Training

© 2009 IBM Corporation22 www.ibm.com/systems/services/labservices

Agenda

Keys to the Kingdom

Exploiting the Primary Key

Pagination with ROW_NUMBER

Column Ordering

Summary

23

IBM Systems Lab Services and Training

© 2009 IBM Corporation23 www.ibm.com/systems/services/labservices

Column Ordering

Provide ability to sort result set on any column
–Multiple columns
–Ascending or Descending

Current stored procedure
–CALL LIST_ACTIVE_EMPLOYEES (‘D11’,10, 1,0);
–Needs another parameter

RDA – Data Source Explorer

Providing the ability to sort on any column in a list is a very user attractive
feature for any graphical interface. Somehow the server must be informed
which column or columns to order by based on a user click of the column.

24

IBM Systems Lab Services and Training

© 2009 IBM Corporation24 www.ibm.com/systems/services/labservices

Data Centric Programming Tip # 6
Use DYNAMIC SQL

CREATE PROCEDURE LIST_ACTIVE_EMPLOYEES (
IN p_WORKDEPT CHAR(3) ,IN p_rows_to_return INTEGER ,
IN p_Starting_Row INTEGER , IN p_ORDER_BY_COLUMNS VARCHAR(50), …

RESULT SETS 1 LANGUAGE SQL SPECIFIC SPACTEMP
P1: BEGIN

DECLARE v_dynSQL VARCHAR(1000);
DECLARE v_Ending_Row INTEGER;
DECLARE SPACTEMP_C1 CURSOR WITH RETURN TO CLIENT FOR SPACTEMP_s1;
SET v_dynSQL =
'WITH cte_row_number as (SELECT EMPNO, ‘

‘ ROW_NUMBER () OVER (ORDER BY ‘ || RTRIM(p_ORDER_BY_COLUMNS) || ‘) AS CTE_RRN ' ||
'FROM ACTIVE_EMPLOYEES 'WHERE DEPTNO = ?) ' ||

'SELECT AE.* FROM ACTIVE_EMPLOYEES AE JOIN cte_row_number using (empno) ‘ ||
‘WHERE CTE_RRN BETWEEN ? AND ? ORDER BY CTE_RRN’;

PREPARE SPACTEMP_s1 FROM v_dynSQL;
SET v_Ending_Row = p_Starting_Row + (p_rows_to_return - 1);
OPEN SPACTEMP_C1 USING p_WORKDEPT, p_Starting_Row, v_Ending_Row;

END P1

Column ordering
passed as variable

Dynamic
SQL

2MB
Limit

CTE_RRN
Dual Purpose

Providing selective column ordering is easy with Dynamic SQL.
<click> Here I’ve added another parameter which is used to pass the column
names or column positions as a variable. The variable is concatenated to the
ORDER BY clause of the ROW_NUMBER function.
<click> The SQL DECLARE statement declares a cursor based on a
statement name. The entire SQL statement is a string (v_dynSQL) which is
built at execution and then assocoated with the statement name as part of the
PREPARE statement.
<click> The ROW_NUMBER function is now performing double duty,
pagination and ordering.

25

IBM Systems Lab Services and Training

© 2009 IBM Corporation25 www.ibm.com/systems/services/labservices

Example of Dynamic Column Ordering with Pagination
CALL LIST_ACTIVE_EMPLOYEES (

‘D11’,30, 1,’LASTNAME, FIRSTNME,
MIDINIT’, 0);

CALL LIST_ACTIVE_EMPLOYEES (
‘D11’,30, 1,’7 DESC, 3,4,5’, 0);

3 4 5 7 DESC

RDA – Data Source Explorer

In this example a single stored procedure can process either column names or
column positions

26

IBM Systems Lab Services and Training

© 2009 IBM Corporation26 www.ibm.com/systems/services/labservices

Dynamic Column Ordering Considerations

Each unique ORDER BY will result in a separate ODP
–Each ODP may be reusable
–DB2 will attempt to manage different ODPs with same cursor name

• Consider unique statement and cursor names for frequently used transactions

Indexing strategy
–Primary table

• Local selection columns, ORDER BY columns, JOIN columns
–WORKDEPT, LASTNAME, FIRSTNME, MIDINIT, EMPNO, EMP_MAST_PK
–Focus on columns used most for ordering

–Secondary tables
• JOIN columns, result set columns (Index Only Access-IOA)

–RI satisfies join requirement
–IOA for highly used lookup or validation tables

SQE Plan Cache or Database Monitor can provide statistics
–Database Analysis tools can help identify most used transactions

Each unique dynamic SQL statement will create an ODP. These ODPs may
become reusable which is good. DB2 for i will manage different SQL
statements for the same cursor until the cursor threshold is met. Then all
ODPs are deleted. The application can use logic to assign different statement
and cursor names for each unique order by.
Create indexes for the CTE table focusing on equal selection columns,
followed by the ordering columns and including the join columns.
Create indexes for the secondary tables with the join column first, followed by
columns used in the result set (if only 1 or 2.
Database analysis tools from IBM or Centerfield can make life simpler for the
database plumber.

27

IBM Systems Lab Services and Training

© 2009 IBM Corporation27 www.ibm.com/systems/services/labservices

Data Centric Programming Tip # 7
Exploit SQL Index Only Access

Avoid or minimize I/O by only reading data from the index
– No need to probe the underlying table

All columns used in the query must be represented in the index
Used with index probe or index scan

– Used with radix and Encoded Vector indexes
Only available to SQL

– RLA must always access the table object

System i Navigator- SQE Plan Cache - Visual Explain

EMP_MAST_PK, STATUS_CODE

DEPTNO, DEPTNAME

Typically the use of an index operation will also include a Table Probe
operation to provide access to any columns needed to satisfy the query that
cannot be found as index keys. If all of the columns necessary to satisfy the
query request for a table can be found as keys of an index, then the Table
Probe is not required and the query uses Index Only Access. Avoiding the
Table Probe can be an important savings for a query. The I/O associated with
a Table Probe is typically the more expensive synchronous random I/O.

28

IBM Systems Lab Services and Training

© 2009 IBM Corporation28 www.ibm.com/systems/services/labservices

Agenda

Keys to the Kingdom

Exploiting the Primary Key

Pagination with ROW_NUMBER

Column Ordering

Summary

29

IBM Systems Lab Services and Training

© 2009 IBM Corporation29 www.ibm.com/systems/services/labservices

The State of the Database on IBM i

In the beginning
–Data Description Specifications (DDS)

•Create external definitions for files (disk, display, printer)
•Limited capabilities

–Application Centric
•Majority of work done in High Level Languages

–CLP, RPG, etc.

DDSDDS

HLLHLL

The IBM i platform has always had a solid foundation for building applications.
This began with the introduction of DDS as a tool for externally describing the
fields that made up a file. This included disk files, display files (green screen)
and printer files. Although making life easier for the programmer DDS never
was intended as a substitute for programming. Thus many of the business
rules were written as part of the HLL application.

The Control Language (CL) provided some commands for expanding the
capabilities of a DDS defined database (ADDPFCST, ADDPFTRG, etc).
However, since most legacy customers did not have a DBA, these capabilities
were never truly exploited, or, if used at all, were used as Band-Aids in a
poorly designed database environment.

30

IBM Systems Lab Services and Training

© 2009 IBM Corporation30 www.ibm.com/systems/services/labservices

The State of the Database on IBM i

DB2 for i

Advanced

Presentation

Languages

DDSDDS

HLLHLL Ready for the Future

Another definition of
unconstrained

–Not limited in action
The Unconstrained Database
Developer

–Utilizes SQL
• Define (DDL), control (DCL) and

manipulate (DML) databases
–Takes advantage of Database

feature and function
• Referential Integrity
• Advanced Join Technology
• Instead of Triggers
• Index Only Access

–Uses POWER Tools
• IBM

– System i Navigator
– Rational (IDE)

• Other
– HomeRun
– Xcase

All code examples and results were created using SQL and the Rational and
System i Navigator tools. Not one line of HLL code was utilized during this
process.

Today, the DDS language is no longer enhanced. All database investment is
being made within the SQL space. SQL provides an industry standard for
defining, controlling and manipulating databases. In addition SQL provides a
programming language for the creation of procedures (programs), triggers,
constraints, etc. Using this language, the database developer can push more
of the business rules and logic down to the database layer, thus facilitating
more reuse as the application languages continue to evolve.

<click> This is the strategic development direction for the IBM i platform.

31

IBM Systems Lab Services and Training

© 2009 IBM Corporation31 www.ibm.com/systems/services/labservices

Where to go from here
Web sites

–Information Center http://publib.boulder.ibm.com/iseries/
–IBM DB2 for i http://ibm.com/systems/i/software/db2/

For those who like to read:
–DB2 SQL PL (Second Edition)
–Database Design for Mere Mortals (Michael J. Hernandez)
–Redbooks

• Preparing for and Tuning the SQL Query Engine on DB2 for I
• Modernizing IBM DB2 for i Application Data Access - A Roadmap Cornerstone
• Stored Procedures, Triggers, and User-Defined Functions on DB2 for I

–White Papers
• Improving DB2 for i SQL procedure performance
• Indexing and statistics strategies for DB2 for i
• Many more on the IBM DB2 for i website

For those who like formal training:
–DB2 for i SQL Performance Workshop

• To enroll select Support-Education from the IBM DB2 for i website
–Coming soon: DB2 for i Data Access Modernization Workshop

32

IBM Systems Lab Services and Training

© 2009 IBM Corporation32 www.ibm.com/systems/services/labservices

33

IBM Systems Lab Services and Training

© 2009 IBM Corporation33 www.ibm.com/systems/services/labservices

Trademarks
Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM Trademarks, see
www.ibm.com/legal/copytrade.shtml: AS/400, DBE, e-business logo, ESCO, eServer, FICON, IBM, IBM Logo, iSeries, MVS, OS/390, pSeries, RS/6000, S/30, VM/ESA, VSE/ESA,
Websphere, xSeries, z/OS, zSeries, z/VM

The following are trademarks or registered trademarks of other companies

Lotus, Notes, and Domino are trademarks or registered trademarks of Lotus Development Corporation
Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries
LINUX is a registered trademark of Linux Torvalds
UNIX is a registered trademark of The Open Group in the United States and other countries.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.
Intel is a registered trademark of Intel Corporation
* All other products may be trademarks or registered trademarks of their respective companies.

NOTES:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that
any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the
workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject
to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the
performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

References in this document to IBM products or services do not imply that IBM intends to make them available in every country.

Any proposed use of claims in this presentation outside of the United States must be reviewed by local IBM country counsel prior to such use.

The information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of
the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those
Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

